D Programming Language 1.0

Last update Sun Dec 30 20:34:42 2012


I think that I can safely say that nobody understands template mechanics. -- Richard Deyman

Templates are D's approach to generic programming. Templates are defined with a TemplateDeclaration:

    template TemplateIdentifier ( TemplateParameterList ) 
	    { DeclDefs }


    TemplateParameter , TemplateParameterList


The body of the TemplateDeclaration must be syntactically correct even if never instantiated. Semantic analysis is not done until instantiated. A template forms its own scope, and the template body can contain classes, structs, types, enums, variables, functions, and other templates.

Template parameters can be types, values, symbols, or tuples. Types can be any type. Value parameters must be of an integral type, floating point type, or string type and specializations for them must resolve to an integral constant, floating point constant, null, or a string literal. Symbols can be any non-local symbol. Tuples are a sequence of 0 or more types, values or symbols.

Template parameter specializations constrain the values or types the TemplateParameter can accept.

Template parameter defaults are the value or type to use for the TemplateParameter in case one is not supplied.

Explicit Template Instantiation

Templates are explicitly instantiated with:

    TemplateIdentifier !( TemplateArgumentList )

    TemplateArgument , TemplateArgumentList


    . SymbolTail

    Identifier . SymbolTail
    TemplateInstance . SymbolTail

Once instantiated, the declarations inside the template, called the template members, are in the scope of the TemplateInstance:

template TFoo(T) { alias T* t; }
TFoo!(int).t x; // declare x to be of type int*

A template instantiation can be aliased:

template TFoo(T) { alias T* t; }
alias TFoo!(int) abc;
abc.t x;        // declare x to be of type int*

Multiple instantiations of a TemplateDeclaration with the same TemplateArgumentList, before implicit conversions, all will refer to the same instantiation. For example:

template TFoo(T) { T f; }
alias TFoo!(int) a;
alias TFoo!(int) b;
a.f = 3;
assert(b.f == 3);  // a and b refer to the same instance of TFoo

This is true even if the TemplateInstances are done in different modules.

Even if template arguments are implicitly converted to the same template parameter type, they still refer to different instances:

struct TFoo(int x) { }
static assert(is(TFoo!(3) == TFoo!(2 + 1))); // 3 and 2+1 are both 3 of type int
static assert(!is(TFoo!(3) == TFoo!(3u)));   // 3u and 3 are different types

If multiple templates with the same TemplateIdentifier are declared, they are distinct if they have a different number of arguments or are differently specialized.

For example, a simple generic copy template would be:

template TCopy(T) {
  void copy(out T to, T from) {
    to = from;

To use the template, it must first be instantiated with a specific type:

int i;
TCopy!(int).copy(i, 3);

Instantiation Scope

TemplateInstantances are always performed in the scope of where the TemplateDeclaration is declared, with the addition of the template parameters being declared as aliases for their deduced types.

For example:

module a
template TFoo(T) { void bar() { func(); } }
module b
import a;

void func() { }
alias TFoo!(int) f; // error: func not defined in module a


module a
template TFoo(T) { void bar() { func(1); } }
void func(double d) { }
module b
import a;

void func(int i) { }
alias TFoo!(int) f;
f.bar();  // will call a.func(double)

TemplateParameter specializations and default values are evaluated in the scope of the TemplateDeclaration.

Argument Deduction

The types of template parameters are deduced for a particular template instantiation by comparing the template argument with the corresponding template parameter.

For each template parameter, the following rules are applied in order until a type is deduced for each parameter:

  1. If there is no type specialization for the parameter, the type of the parameter is set to the template argument.
  2. If the type specialization is dependent on a type parameter, the type of that parameter is set to be the corresponding part of the type argument.
  3. If after all the type arguments are examined there are any type parameters left with no type assigned, they are assigned types corresponding to the template argument in the same position in the TemplateArgumentList.
  4. If applying the above rules does not result in exactly one type for each template parameter, then it is an error.

For example:

template TFoo(T) { }
alias TFoo!(int) Foo1;     // (1) T is deduced to be int
alias TFoo!(char*) Foo2;   // (1) T is deduced to be char*

template TBar(T : T*) { }
alias TBar!(char*) Foo3;   // (2) T is deduced to be char

template TAbc(D, U : D[]) { }
alias TAbc!(int, int[]) Bar1;  // (2) D is deduced to be int, U is int[]
alias TAbc!(char, int[]) Bar2; // (4) error, D is both char and int

template TDef(D : E*, E) { }
alias TDef!(int*, int) Bar3; // (1) E is int
                             // (3) D is int*

Deduction from a specialization can provide values for more than one parameter:

template Foo(T: T[U], U) {

Foo!(int[long])  // instantiates Foo with T set to int, U set to long

When considering matches, a class is considered to be a match for any super classes or interfaces:

class A { }
class B : A { }

template TFoo(T : A) { }
alias TFoo!(B) Foo4;    // (3) T is B

template TBar(T : U*, U : A) { }
alias TBar!(B*, B) Foo5; // (2) T is B*
                         // (3) U is B

Template Type Parameters

    Identifier TemplateTypeParameterSpecialization
    Identifier TemplateTypeParameterDefault
    Identifier TemplateTypeParameterSpecialization TemplateTypeParameterDefault

     : Type

     = Type


Templates may be specialized for particular types of arguments by following the template parameter identifier with a : and the specialized type. For example:

template TFoo(T)        { ... } // #1
template TFoo(T : T[])  { ... } // #2
template TFoo(T : char) { ... } // #3
template TFoo(T,U,V)    { ... } // #4

alias TFoo!(int) foo1;         // instantiates #1
alias TFoo!(double[]) foo2;    // instantiates #2 with T being double
alias TFoo!(char) foo3;        // instantiates #3
alias TFoo!(char, int) fooe;   // error, number of arguments mismatch
alias TFoo!(char, int, int) foo4; // instantiates #4

The template picked to instantiate is the one that is most specialized that fits the types of the TemplateArgumentList. Determine which is more specialized is done the same way as the C++ partial ordering rules. If the result is ambiguous, it is an error.

Template Value Parameters

    BasicType Declarator
    BasicType Declarator TemplateValueParameterSpecialization
    BasicType Declarator TemplateValueParameterDefault
    BasicType Declarator TemplateValueParameterSpecialization TemplateValueParameterDefault

    : ConditionalExpression


    = AssignExpression

Template value parameter types can be any type which can be statically initialized at compile time. Template value arguments can be integer values, floating point values, nulls, string values, array literals of template value arguments, associative array literals of template value arguments, or struct literals of template value arguments.

template foo(string s) {
  string bar() { return s ~ " betty"; }

void main() {
  writefln("%s", foo!("hello").bar()); // prints: hello betty

This example of template foo has a value parameter that is specialized for 10:

template foo(U : int, int T : 10) {
  U x = T;

void main() {
  assert(foo!(int, 10).x == 10);

Template Alias Parameters

    alias Identifier TemplateAliasParameterSpecializationopt TemplateAliasParameterDefaultopt
    alias BasicType Declarator TemplateAliasParameterSpecializationopt TemplateAliasParameterDefaultopt

    : Type
    : ConditionalExpression

    = Type
    = ConditionalExpression

Alias parameters enable templates to be parameterized with any type of D symbol, including global names, local names, typedef names, module names, template names, and template instance names.

Template Tuple Parameters

        Identifier ...

If the last template parameter in the TemplateParameterList is declared as a TemplateTupleParameter, it is a match with any trailing template arguments. The sequence of arguments form a Tuple. A Tuple is not a type, an expression, or a symbol. It is a sequence of any mix of types, expressions or symbols.

A Tuple whose elements consist entirely of types is called a TypeTuple. A Tuple whose elements consist entirely of expressions is called an ExpressionTuple.

A Tuple can be used as an argument list to instantiate another template, or as the list of parameters for a function.

template Print(A ...) {
  void print() {
    writefln("args are ", A);

template Write(A ...) {
  void write(A a) // A is a TypeTuple
                  // a is an ExpressionTuple
    writefln("args are ", a);

void main() {
  Print!(1,'a',6.8).print();                    // prints: args are 1a6.8
  Write!(int, char, double).write(1, 'a', 6.8); // prints: args are 1a6.8

Template tuples can be deduced from the types of the trailing parameters of an implicitly instantiated function template:

template Foo(T, R...) {
  void Foo(T t, R r) {
    static if (r.length) // if more arguments
      Foo(r);            // do the rest of the arguments

void main() {
  Foo(1, 'a', 6.8);



The tuple can also be deduced from the type of a delegate or function parameter list passed as a function argument:

import std.stdio;

/* R is return type
 * A is first argument type
 * U is TypeTuple of rest of argument types
R delegate(U) Curry(R, A, U...)(R delegate(A, U) dg, A arg)
  struct Foo
    typeof(dg) dg_m;
    typeof(arg) arg_m;

    R bar(U u)
      return dg_m(arg_m, u);

  Foo* f = new Foo;
  f.dg_m = dg;
  f.arg_m = arg;
  return &f.bar;

void main()
  int plus(int x, int y, int z)
    return x + y + z;

  auto plus_two = Curry(&plus, 2);
  writefln("%d", plus_two(6, 8)); // prints 16

The number of elements in a Tuple can be retrieved with the .length property. The nth element can be retrieved by indexing the Tuple with [n], and sub tuples can be created with the slicing syntax.

Tuples are static compile time entities, there is no way to dynamically change, add, or remove elements.

If both a template with a tuple parameter and a template without a tuple parameter exactly match a template instantiation, the template without a TemplateTupleParameter is selected.

Template Parameter Default Values

Trailing template parameters can be given default values:

template Foo(T, U = int) { ... }
Foo!(uint,long); // instantiate Foo with T as uint, and U as long
Foo!(uint);      // instantiate Foo with T as uint, and U as int

template Foo(T, U = T*) { ... }
Foo!(uint);      // instantiate Foo with T as uint, and U as uint*

Implicit Template Properties

If a template has exactly one member in it, and the name of that member is the same as the template name, that member is assumed to be referred to in a template instantiation:

template Foo(T) {
  T Foo; // declare variable Foo of type T

void test() {
  Foo!(int) = 6; // instead of Foo!(int).Foo

Template Constructors

    this ( TemplateParameterList ) Parameters Constraintopt FunctionBody

Templates can be used to form constructors for classes.

Class Templates

    class Identifier ( TemplateParameterList ) Constraintopt BaseClassListopt ClassBody

If a template declares exactly one member, and that member is a class with the same name as the template:

template Bar(T) {
  class Bar {
    T member;

then the semantic equivalent, called a ClassTemplateDeclaration can be written as:

class Bar(T) {
  T member;

Struct, Union, and Interface Templates

    struct Identifier ( TemplateParameterList )  StructBody

    union Identifier ( TemplateParameterList )  StructBody

    interface Identifier ( TemplateParameterList )  BaseInterfaceListopt InterfaceBody

Analogously to class templates, struct, union and interfaces can be transformed into templates by supplying a template parameter list.

Function Templates

If a template declares exactly one member, and that member is a function with the same name as the template, it is a function template declaration. Alternatively, a function template declaration is a function declaration with a TemplateParameterList immediately preceding the Parameters.

A function template to compute the square of type T is:

T Square(T)(T t) {
  return t * t;

Function templates can be explicitly instantiated with a !(TemplateArgumentList):

writefln("The square of %s is %s", 3, Square!(int)(3));

or implicitly, where the TemplateArgumentList is deduced from the types of the function arguments:

writefln("The square of %s is %s", 3, Square(3));  // T is deduced to be int

If there are fewer arguments supplied in the TemplateArgumentList than parameters in the TemplateParameterList, the arguments fulfill parameters from left to right, and the rest of the parameters are then deduced from the function arguments.

Function template type parameters that are to be implicitly deduced may not have specializations:

void Foo(T : T*)(T t) { ... }

int x,y;
Foo!(int*)(x);   // ok, T is not deduced from function argument
Foo(&y);         // error, T has specialization

Template arguments not implicitly deduced can have default values:

void Foo(T, U=T*)(T t) { U p; ... }

int x;
Foo(&x);    // T is int, U is int*

Function Templates with Auto Ref Parameters

An auto ref function template parameter becomes a ref parameter if its corresponding argument is an lvalue, otherwise it becomes a value parameter:

int foo(T...)(auto ref T x) {
  int result;

  foreach (i, v; x)
    if (v == 10)
      assert(__traits(isRef, x[i]));
      assert(!__traits(isRef, x[i]));
    result += v;
  return result;

void main() {
  int y = 10;
  int r;
  r = foo(8);       // returns 8
  r = foo(y);       // returns 10
  r = foo(3, 4, y); // returns 17
  r = foo(4, 5, y); // returns 19
  r = foo(y, 6, y); // returns 26

Auto ref parameters can be combined with auto ref return attributes:

auto ref min(T, U)(auto ref T lhs, auto ref U rhs)
  return lhs > rhs ? rhs : lhs;

void main()
  int x = 7, y = 8;
  int i;

  i = min(4, 3);     // returns 3
  i = min(x, y);     // returns 7
  min(x, y) = 10;    // sets x to 10
  static assert(!__traits(compiles, min(3, y) = 10));
  static assert(!__traits(compiles, min(y, 3) = 10));

Recursive Templates

Template features can be combined to produce some interesting effects, such as compile time evaluation of non-trivial functions. For example, a factorial template can be written:

template factorial(int n : 1) {
  enum { factorial = 1 }

template factorial(int n) {
  enum { factorial = n* factorial!(n-1) }

void test() {
  writefln("%s", factorial!(4)); // prints 24


Templates cannot be used to add non-static members or virtual functions to classes. For example:

class Foo {
  template TBar(T) {
    T xx;               // becomes a static member of Foo
    int func(T) { ... } // non-virtual

    static T yy;                        // Ok
    static int func(T t, int y) { ... } // Ok

Templates cannot be declared inside functions.

Templates cannot add functions to interfaces:

interface TestInterface { void tpl(T)(); }   // error

Forums | Comments |  D  | Search | Downloads | Home