digitalmars.D - stream interfaces - with ranges
- Steven Schveighoffer (64/64) May 17 2012 OK, so I had a couple partially written replies on the 'deprecating
- Andrei Alexandrescu (18/71) May 17 2012 Ah, there we go :o).
- Steven Schveighoffer (32/79) May 17 2012 Right. The thing is, buffered streams are good as plain ranges for one ...
- kenji hara (34/97) May 17 2012 I think range interface is not useful for *efficient* IO. The expected
- Dmitry Olshansky (10/23) May 18 2012 There is no problem with blocking _interface_. That is the facade. The
- Artur Skawina (9/29) May 18 2012 I just took a look, and yes, that's yet another slightly different imple...
- Steven Schveighoffer (33/52) May 18 2012 If all you are doing is consuming data and processing it, range interfac...
- kenji hara (34/86) May 18 2012 is
- Steven Schveighoffer (26/127) May 18 2012 On non-blocking i/o, why not just not support range interface at all? I...
- kenji hara (6/11) May 18 2012 d
- Steven Schveighoffer (19/30) May 18 2012 OK, *now* I understand what you mean by non-blocking. There are some I/...
- kenji hara (30/53) May 18 2012 e:
- Andrei Alexandrescu (3/6) May 18 2012 That sounds very promising.
- Mehrdad (29/31) May 18 2012 The trouble is, why a slice? Why not an std.array.Array? Why not
- Roman D. Boiko (5/36) May 18 2012 Provide slicing if underlying data source is compatible.
- Steven Schveighoffer (19/47) May 18 2012 Well, because that's what i/o buffers are :) There isn't an OS primitiv...
- Mehrdad (4/16) May 18 2012 I beg to differ..
- Steven Schveighoffer (4/20) May 18 2012 It still reads into an array of buffers, which are slices. And the
- Mehrdad (3/10) May 18 2012 Uh, the resulting range can be totally discontiguous...
- Steven Schveighoffer (4/15) May 18 2012 So? So can a range of T[].
- Mehrdad (10/13) May 18 2012 Well you mentioned "There isn't an OS primitive that reads a file
- Steven Schveighoffer (4/17) May 18 2012 No, by range of T[] I mean this:
- Mehrdad (11/15) May 18 2012 Yes, I believe I understood it correctly...
- Martin Nowak (14/17) May 21 2012 It's a pity that iovec and T[] have switch length/ptr fields.
- Andrei Alexandrescu (6/20) May 18 2012 Because T[] is the fundamental representation of a typed contiguous area...
- Artur Skawina (35/65) May 18 2012 No. 'empty' has to return true only _after_ seeing EOF.
- Steven Schveighoffer (8/40) May 18 2012 I think this is an example of what Kenji and I are talking about -- tryi...
- kenji hara (24/89) May 18 2012 OK. If reading bytes from underlying device failed, your 'fronts' can
- Andrei Alexandrescu (16/31) May 18 2012 Yah, this goes back to the fact that ranges are by definition buffered;
- David Nadlinger (8/14) May 18 2012 And I think the issues you brought up some time ago regarding to
- Artur Skawina (29/131) May 18 2012 Depends if your input range supports zero-copy or not. IOW you avoid
- kenji hara (21/64) May 18 2012 The flaw of your design is, the memory to store read bytes/elements is
- Artur Skawina (20/75) May 18 2012 If you pick just one scheme, then you will end up with an unnecessary
- Artur Skawina (5/14) May 18 2012 And is apparently windows-only; missing HANDLE type, non-
- Masahiro Nakagawa (4/18) May 19 2012 Current dio is PoC for new IO design.
- Artur Skawina (4/8) May 18 2012 It's not exactly what i had i mind, but i tried to build it;
- kenji hara (4/12) May 19 2012 Sorry, I have updated it.
- Masahiro Nakagawa (8/24) May 19 2012 Please add README to top directory.
- travert phare.normalesup.org (Christophe Travert) (56/111) May 21 2012 I don't have time to read the whole discussion right now, but I've
OK, so I had a couple partially written replies on the 'deprecating std.stream etc' thread, then I had to go home. But I thought about this a lot last night, and some of the things Andrei and others are saying is starting to make sense (I know!). Now I've scrapped those replies and am thinking about redesigning my i/o package (most of the code can stay intact). I'm a little undecided on some of the details, but here is what I think makes sense: 1. We need a buffering input stream type. This must have additional methods besides the range primitives, because doing one-at-a-time byte reads is not going to cut it. 2. I realized, buffering input stream of type T is actually an input range of type T[]. Observe: struct /*or class*/ buffer(T) { T[] buf; InputStream input; ... property T[] front() { return buf; } void popFront() {input.read(buf);} // flush existing buffer, read next. property bool empty() { return buf.length == 0;} } Roughly speaking, not all the details are handled, but this makes a feasible input range that will perform quite nicely for things like std.algorithm.copy. I haven't checked, but copy should be able to handle transferring a range of type T[] to an output range with element type T, if it's not able to, it should be made to work. I know at least, an output stream with element type T supports putting T or T[]. What I think really makes sense is to support: buffer!ubyte b; outputStream o; o.put(b); // uses range primitives to put all the data to o, one element (i.e. ubyte[]) of b at a time 3. An ultimate goal of the i/o streaming package should be to be able to do this: auto x = new XmlParser("<rootElement></rootElement>"); or at least auto x = new XmlParser(buffered("<rootElement></rootElement>")); So I think arrays need to be able to be treated as a buffering streams. I tried really hard to think of some way to make this work with my existing system, but I don't think it will without unnecessary baggage, and losing interoperability with existing range functions. Where does this leave us? 1. I think we need, as Andrei says, an unbuffered streaming abstraction. I think I have this down pretty solidly in my current std.io. 2. A definition of a buffering range, in terms of what additional primitives the range should have. The primitives should support buffered input and buffered output (these are two separate algorithms), but independently (possibly allowing switching for rw files). 3. An implementation of the above definition hooked to the unbuffered stream abstraction, to be utilized in more specific ranges. But by itself, can be used as an input range or directly by code. 4. Specialization ranges for each type of input you want (i.e. byLine, byChunk, textStream). 5. Full replacement option of File backend. File will start out with C-supported calls, but any "promotion" to using a more D-like range type will result in switching to a D-based stream using the above mechanisms. Of course, all existing code should compile that does not try to assume the File always has a valid FILE *. What do you all think? I'm going to work out what the definition of 2 should be, based on what I've written and what makes sense. Have I started to design something feasible or unworkable? :) -Steve
May 17 2012
On 5/17/12 9:02 AM, Steven Schveighoffer wrote:1. We need a buffering input stream type. This must have additional methods besides the range primitives, because doing one-at-a-time byte reads is not going to cut it.I was thinking a range of T[] could be enough for a buffered input range.2. I realized, buffering input stream of type T is actually an input range of type T[]. Observe:Ah, there we go :o).struct /*or class*/ buffer(T) { T[] buf; InputStream input; ... property T[] front() { return buf; } void popFront() {input.read(buf);} // flush existing buffer, read next. property bool empty() { return buf.length == 0;} } Roughly speaking, not all the details are handled, but this makes a feasible input range that will perform quite nicely for things like std.algorithm.copy. I haven't checked, but copy should be able to handle transferring a range of type T[] to an output range with element type T, if it's not able to, it should be made to work.We can do this for copy, but if we need to specialize a lot of other algorithms, maybe we didn't strike the best design.I know at least, an output stream with element type T supports putting T or T[].Right.What I think really makes sense is to support: buffer!ubyte b; outputStream o; o.put(b); // uses range primitives to put all the data to o, one element (i.e. ubyte[]) of b at a timeI think that makes sense.3. An ultimate goal of the i/o streaming package should be to be able to do this: auto x = new XmlParser("<rootElement></rootElement>"); or at least auto x = new XmlParser(buffered("<rootElement></rootElement>")); So I think arrays need to be able to be treated as a buffering streams. I tried really hard to think of some way to make this work with my existing system, but I don't think it will without unnecessary baggage, and losing interoperability with existing range functions.I think we can create a generic abstraction buffered() that layers buffering on top of an input range. If the input range has unbuffered read capability, buffered() would use those. Otherwise, it would use loops using empty, front, and popFront.Where does this leave us? 1. I think we need, as Andrei says, an unbuffered streaming abstraction. I think I have this down pretty solidly in my current std.io.Great. What are the primitives?2. A definition of a buffering range, in terms of what additional primitives the range should have. The primitives should support buffered input and buffered output (these are two separate algorithms), but independently (possibly allowing switching for rw files).Sounds good.3. An implementation of the above definition hooked to the unbuffered stream abstraction, to be utilized in more specific ranges. But by itself, can be used as an input range or directly by code.Hah, I can't believe I wrote about the same thing above (and I swear I didn't read yours).4. Specialization ranges for each type of input you want (i.e. byLine, byChunk, textStream).What is the purpose? To avoid unnecessary double buffering?5. Full replacement option of File backend. File will start out with C-supported calls, but any "promotion" to using a more D-like range type will result in switching to a D-based stream using the above mechanisms. Of course, all existing code should compile that does not try to assume the File always has a valid FILE *.This will be tricky but probably doable. Andrei
May 17 2012
On Thu, 17 May 2012 11:46:18 -0400, Andrei Alexandrescu <SeeWebsiteForEmail erdani.org> wrote:On 5/17/12 9:02 AM, Steven Schveighoffer wrote:Right. The thing is, buffered streams are good as plain ranges for one thing -- forwarding data. There probably aren't many algorithms in std.algorithm that are applicable. And there is always the put idiom, Appender.put(buf) should work to accumulate all data into an array, which can then be used as a normal range. One thing that worries me, if you did something like array(bufferedStream), it would accumulate N copies of the buffer reference, which wouldn't be what you want at all. Of course, you could apply map to buffer to dup it.Roughly speaking, not all the details are handled, but this makes a feasible input range that will perform quite nicely for things like std.algorithm.copy. I haven't checked, but copy should be able to handle transferring a range of type T[] to an output range with element type T, if it's not able to, it should be made to work.We can do this for copy, but if we need to specialize a lot of other algorithms, maybe we didn't strike the best design.Right, this is different from my proposed buffer implementation, which puts a buffer on top of an unbuffered input *stream*. But of course, we can define it for both, since it will be a compile-time interface.3. An ultimate goal of the i/o streaming package should be to be able to do this: auto x = new XmlParser("<rootElement></rootElement>"); or at least auto x = new XmlParser(buffered("<rootElement></rootElement>")); So I think arrays need to be able to be treated as a buffering streams. I tried really hard to think of some way to make this work with my existing system, but I don't think it will without unnecessary baggage, and losing interoperability with existing range functions.I think we can create a generic abstraction buffered() that layers buffering on top of an input range. If the input range has unbuffered read capability, buffered() would use those. Otherwise, it would use loops using empty, front, and popFront.See here: https://github.com/schveiguy/phobos/blob/new-io2/std/io.d#L170 Through IODevice. The BufferedStream type is going to be redone as a range.Where does this leave us? 1. I think we need, as Andrei says, an unbuffered streaming abstraction. I think I have this down pretty solidly in my current std.io.Great. What are the primitives?Well, not quite :) You wrote about it being supported by an underlying range, I need to have it supported by an underlying stream. We probably need both. But yeah, I think we are mostly on the same page here.3. An implementation of the above definition hooked to the unbuffered stream abstraction, to be utilized in more specific ranges. But by itself, can be used as an input range or directly by code.Hah, I can't believe I wrote about the same thing above (and I swear I didn't read yours).No, a specialization range *uses* a buffer range as its backing. A buffer range I think is necessarily going to be a reference type (probably a class). The specialized range won't replace the buffer range, in other words. Something like byLine is going to do the work of extracting lines from the buffer, it will reference the buffer data directly. But it won't reimplement buffering.4. Specialization ranges for each type of input you want (i.e. byLine, byChunk, textStream).What is the purpose? To avoid unnecessary double buffering?Doing this will unify all the i/o packages together into one interface -- File. I think it's a bad story for D if you have 2 ways of doing i/o (or at least 2 ways of doing the *same thing* with i/o). -Steve5. Full replacement option of File backend. File will start out with C-supported calls, but any "promotion" to using a more D-like range type will result in switching to a D-based stream using the above mechanisms. Of course, all existing code should compile that does not try to assume the File always has a valid FILE *.This will be tricky but probably doable.
May 17 2012
I think range interface is not useful for *efficient* IO. The expected IO interface will be more *abstract* than range primitives. --- If you use range I/F to read bytes from device, we will always do blocking IO - even if the device is socket. It is not efficient. auto sock =3D new TcpSocketDevice(); if (sock.empty) { auto e =3D sock.front; } // In empty primitive, we *must* wait the socket gets one or more bytes or really disconnected. // If not, what exactly returns sock.front? // Then using range interface for socket reading enforces blocking IO. It is *really* inefficient. --- I think IO primitives must be distinct from range ones for the reasons mentioned above... I'm designing experimental IO primitives: https://github.com/9rnsr/dio I call the input stream "source", and call output stream "sink". "source" has a 'pull' primitive, and sink has 'push' primitive, and they can avoid blocking. If you want to construct input range interface from "source", you should use 'ranged' helper function in io.core module. 'ranged' returns a wrapper object, and in its front method, It reads bytes from "source", and if the read bytes not sufficient, blocks the input. In other words, range is not almighty. We should think distinct primitives for the IO. Kenji Hara 2012/5/17 Steven Schveighoffer <schveiguy yahoo.com>:OK, so I had a couple partially written replies on the 'deprecating std.stream etc' thread, then I had to go home. But I thought about this a lot last night, and some of the things Andrei and others are saying is starting to make sense (I know!). =A0Now I've scrapped those replies and am thinking about redesigning my i/o package (most of the code can stay intact). I'm a little undecided on some of the details, but here is what I think makes sense: 1. We need a buffering input stream type. =A0This must have additional methods besides the range primitives, because doing one-at-a-time byte reads is not going to cut it. 2. I realized, buffering input stream of type T is actually an input rang=eof type T[]. =A0Observe: struct /*or class*/ buffer(T) { =A0 =A0 T[] buf; =A0 =A0 InputStream input; =A0 =A0 ... =A0 =A0 property T[] front() { return buf; } =A0 =A0 void popFront() {input.read(buf);} // flush existing buffer, read=next.=A0 =A0 property bool empty() { return buf.length =3D=3D 0;} } Roughly speaking, not all the details are handled, but this makes a feasible input range that will perform quite nicely for things like std.algorithm.copy. =A0I haven't checked, but copy should be able to hand=letransferring a range of type T[] to an output range with element type T, if it's not able to, it should be made to work. =A0I know at least, an output stream with element type T supports putting T or T[]. =A0What I th=inkreally makes sense is to support: buffer!ubyte b; outputStream o; o.put(b); // uses range primitives to put all the data to o, one element (i.e. ubyte[]) of b at a time 3. An ultimate goal of the i/o streaming package should be to be able to do this: auto x =3D new XmlParser("<rootElement></rootElement>"); or at least auto x =3D new XmlParser(buffered("<rootElement></rootElement>")); So I think arrays need to be able to be treated as a buffering streams. ==A0Itried really hard to think of some way to make this work with my existing system, but I don't think it will without unnecessary baggage, and losing interoperability with existing range functions. Where does this leave us? 1. I think we need, as Andrei says, an unbuffered streaming abstraction. I think I have this down pretty solidly in my current std.io. 2. A definition of a buffering range, in terms of what additional primitives the range should have. =A0The primitives should support buffer=edinput and buffered output (these are two separate algorithms), but independently (possibly allowing switching for rw files). 3. An implementation of the above definition hooked to the unbuffered stream abstraction, to be utilized in more specific ranges. =A0But by itself, can be used as an input range or directly by code. 4. Specialization ranges for each type of input you want (i.e. byLine, byChunk, textStream). 5. Full replacement option of File backend. =A0File will start out with C-supported calls, but any "promotion" to using a more D-like range type will result in switching to a D-based stream using the above mechanisms. Of course, all existing code should compile that does not try to assume the File always has a valid FILE *. What do you all think? =A0I'm going to work out what the definition of 2 should be, based on what I've written and what makes sense. Have I started to design something feasible or unworkable? :) -Steve
May 17 2012
On 18.05.2012 8:19, kenji hara wrote:I think range interface is not useful for *efficient* IO. The expected IO interface will be more *abstract* than range primitives. --- If you use range I/F to read bytes from device, we will always do blocking IO - even if the device is socket. It is not efficient. auto sock = new TcpSocketDevice(); if (sock.empty) { auto e = sock.front; } // In empty primitive, we *must* wait the socket gets one or more bytes or really disconnected. // If not, what exactly returns sock.front? // Then using range interface for socket reading enforces blocking IO. It is *really* inefficient. ---There is no problem with blocking _interface_. That is the facade. The actual work can happen in background thread (and in fact it often is). So while you work with first chunk the next one is downloaded behind the scenes. Just take a look at std.net.curl all these asyncByChunk ... and then there is vide.d that shows that having blocking interface for asynchronous i/o is alright. -- Dmitry Olshansky
May 18 2012
On 05/18/12 13:34, Dmitry Olshansky wrote:On 18.05.2012 8:19, kenji hara wrote:I just took a look, and yes, that's yet another slightly different implementation of the same thing with a somewhat different interface: https://github.com/rejectedsoftware/vibe.d/blob/399b7a9d6eba9b14ea8d2215498daf53bd8d27d8/source/vibe/stream/stream.d I thought i was exaggerating when i said 'thirteen', but there are already more of them mentioned in this thread than i could count on one hand... This one has an implicit flush and also this: "Finalize has to be called on certain types of streams.". Not to mention it's class based. arturI think range interface is not useful for *efficient* IO. The expected IO interface will be more *abstract* than range primitives. --- If you use range I/F to read bytes from device, we will always do blocking IO - even if the device is socket. It is not efficient. auto sock = new TcpSocketDevice(); if (sock.empty) { auto e = sock.front; } // In empty primitive, we *must* wait the socket gets one or more bytes or really disconnected. // If not, what exactly returns sock.front? // Then using range interface for socket reading enforces blocking IO. It is *really* inefficient. ---There is no problem with blocking _interface_. That is the facade. The actual work can happen in background thread (and in fact it often is). So while you work with first chunk the next one is downloaded behind the scenes. Just take a look at std.net.curl all these asyncByChunk ... and then there is vide.d that shows that having blocking interface for asynchronous i/o is alright.
May 18 2012
On Fri, 18 May 2012 00:19:45 -0400, kenji hara <k.hara.pg gmail.com> wrote:I think range interface is not useful for *efficient* IO. The expected IO interface will be more *abstract* than range primitives.If all you are doing is consuming data and processing it, range interface is efficient. Most streaming implementations that are synchronous use: 1. read block of data from low-level source into buffer 2. process buffer 3. If still data left, go to step 1. 1 is done via popFront, 2 is done via front. 3 is somewhat available via empty, but empty kind of depends on reading data. I think it can work. It's not the ideal interface for all aspects of i/o, but it does map to ranges, and for single purpose tasks (such as parse an XML file), it will be most efficient.--- If you use range I/F to read bytes from device, we will always do blocking IO - even if the device is socket. It is not efficient. auto sock = new TcpSocketDevice(); if (sock.empty) { auto e = sock.front; } // In empty primitive, we *must* wait the socket gets one or more bytes or really disconnected. // If not, what exactly returns sock.front? // Then using range interface for socket reading enforces blocking IO. It is *really* inefficient. ---sockets do not have to be blocking, and I/O does not have to use the range portion of the interface. And efficient I/O has little to do with synchronicity and more to do with reading a large amount of data at a time instead of byte by byte. Using multi-threads or fibers, and using OS primitives such as select or poll can make I/O quite efficient and allow you to do other things while no I/O is happening. These will not happen with range interface, but will be available through other interfaces.I think IO primitives must be distinct from range ones for the reasons mentioned above...Yes, I agree. But ranges can be *mapped* to stream primitives.I'm designing experimental IO primitives: https://github.com/9rnsr/dioI'll take a look.In other words, range is not almighty. We should think distinct primitives for the IO.100% agree. The main thing I realized that brought me to propose the "range-based" (if you can call it that) version is that: 1. Ranges can be readily mapped to stream primitives *if* you use the concept of a range of T[] vs. a range of T. So in essence, without changing anything I can slap on a range interface for free. 2. Arrays make very efficient data sources, and are easy to create. We need a way to hook stream-using code onto an array. But be clear, I am *not* going to remove the existing stream I/O primitives I had for buffered i/o, I'm rather *adding* range primitives as well. -Steve
May 18 2012
2012/5/18 Steven Schveighoffer <schveiguy yahoo.com>:On Fri, 18 May 2012 00:19:45 -0400, kenji hara <k.hara.pg gmail.com> wrot=e:isI think range interface is not useful for *efficient* IO. The expected IO interface will be more *abstract* than range primitives.If all you are doing is consuming data and processing it, range interface=efficient. =C2=A0Most streaming implementations that are synchronous use: 1. read block of data from low-level source into buffer 2. process buffer 3. If still data left, go to step 1. 1 is done via popFront, 2 is done via front. 3 is somewhat available via empty, but empty kind of depends on reading data. =C2=A0I think it can work. It's not the ideal interface for all aspects of i/o, but it does map to ranges, and for single purpose tasks (such as parse an XML file), it will=bemost efficient.Almost agree. When we want to do I/O, that is synchronous or asynchronous. Only a few people would use non-blocking interface. But for the library implementation, non-blocking interface is still importa= nt. I think the non-blocking interface should be designed to avoid copying as far as possible, and to achieve it with range interface is impossible in general.e--- If you use range I/F to read bytes from device, we will always do blocking IO - even if the device is socket. It is not efficient. auto sock =3D new TcpSocketDevice(); if (sock.empty) { auto e =3D sock.front; } =C2=A0// In empty primitive, we *must* wait the socket gets one or more bytes or really disconnected. =C2=A0// If not, what exactly returns sock.front? =C2=A0// Then using range interface for socket reading enforces blocking IO. It is *really* inefficient. ---sockets do not have to be blocking, and I/O does not have to use the rang=portion of the interface. And efficient I/O has little to do with synchronicity and more to do with reading a large amount of data at a time instead of byte by byte. Using multi-threads or fibers, and using OS primitives such as select or poll can make I/O quite efficient and allow you to do other things while =noI/O is happening. =C2=A0These will not happen with range interface, but w=ill beavailable through other interfaces.I have talked about *good I/O primitives for library implementation*. I think range interface is one of the most useful concept for end users, but not good one for people who want to implement efficient libraries.No, we cannot map output range concept to non-blocking output. 'put' operation always requires blocking.I think IO primitives must be distinct from range ones for the reasons mentioned above...Yes, I agree. =C2=A0But ranges can be *mapped* to stream primitives.Thanks.I'm designing experimental IO primitives: https://github.com/9rnsr/dioI'll take a look.eIn other words, range is not almighty. We should think distinct primitives for the IO.100% agree. =C2=A0The main thing I realized that brought me to propose th="range-based" (if you can call it that) version is that: 1. Ranges can be readily mapped to stream primitives *if* you use the concept of a range of T[] vs. a range of T. =C2=A0So in essence, without =changinganything I can slap on a range interface for free. 2. Arrays make very efficient data sources, and are easy to create. =C2==A0We needa way to hook stream-using code onto an array. But be clear, I am *not* going to remove the existing stream I/O primitiv=esI had for buffered i/o, I'm rather *adding* range primitives as well.My policy is very similar. But, as described above, I think range cannot cover non-blocing IO. And I think non-blocking IO interface is important for library implementati= ons. Then I had taken a design that provides IO specific primitives. Additionally I have added primitives to control underlying buffers explicitly, because it is useful for some byte processing - e.g. encoding, taking a string with slicing the buffer, and so on. Kenji Hara
May 18 2012
On Fri, 18 May 2012 10:39:55 -0400, kenji hara <k.hara.pg gmail.com> wrote:2012/5/18 Steven Schveighoffer <schveiguy yahoo.com>:On non-blocking i/o, why not just not support range interface at all? I don't have any problem with that. In other words, if your input source is non-blocking, and you try to use range primitives, it simply won't work. I admit, all of my code so far is focused on blocking i/o. I have some experience with non-blocking i/o, but it was to make a blocking interface that supported waiting for data with a timeout. Making a cross-platform (i.e. both windows and Posix) non-blocking interface is difficult because you use very different mechanisms on both OSes. And a lot of times, you don't want non-blocking i/o, but rather parallel i/o.On Fri, 18 May 2012 00:19:45 -0400, kenji hara <k.hara.pg gmail.com> wrote:Almost agree. When we want to do I/O, that is synchronous or asynchronous. Only a few people would use non-blocking interface. But for the library implementation, non-blocking interface is still important. I think the non-blocking interface should be designed to avoid copying as far as possible, and to achieve it with range interface is impossible in general.I think range interface is not useful for *efficient* IO. The expected IO interface will be more *abstract* than range primitives.If all you are doing is consuming data and processing it, range interface is efficient. Most streaming implementations that are synchronous use: 1. read block of data from low-level source into buffer 2. process buffer 3. If still data left, go to step 1. 1 is done via popFront, 2 is done via front. 3 is somewhat available via empty, but empty kind of depends on reading data. I think it can work. It's not the ideal interface for all aspects of i/o, but it does map to ranges, and for single purpose tasks (such as parse an XML file), it will be most efficient.OK, I think we agree. I am concerned about writing good library types that can efficiently use I/O. The range interface will be for people who use the library and want to utilize existing range primitives for whatever purpose.I have talked about *good I/O primitives for library implementation*. I think range interface is one of the most useful concept for end users, but not good one for people who want to implement efficient libraries.--- If you use range I/F to read bytes from device, we will always do blocking IO - even if the device is socket. It is not efficient. auto sock = new TcpSocketDevice(); if (sock.empty) { auto e = sock.front; } // In empty primitive, we *must* wait the socket gets one or more bytes or really disconnected. // If not, what exactly returns sock.front? // Then using range interface for socket reading enforces blocking IO. It is *really* inefficient. ---sockets do not have to be blocking, and I/O does not have to use the range portion of the interface. And efficient I/O has little to do with synchronicity and more to do with reading a large amount of data at a time instead of byte by byte. Using multi-threads or fibers, and using OS primitives such as select or poll can make I/O quite efficient and allow you to do other things while no I/O is happening. These will not happen with range interface, but will be available through other interfaces.Yes, but again, put can use whatever stream primitives we have. In other words, it's quite possible to write range primitives which utilize stream primitivies. It's impossible to write good stream primitives which utilize range primitives.No, we cannot map output range concept to non-blocking output. 'put' operation always requires blocking.I think IO primitives must be distinct from range ones for the reasons mentioned above...Yes, I agree. But ranges can be *mapped* to stream primitives.I'm having trouble following the code, is there a place with the generated docs? I'm looking for an overview to understand where to look. Your lib is quite extensive, mine is only one file ;)Thanks.I'm designing experimental IO primitives: https://github.com/9rnsr/dioI'll take a look.I think you misunderstand, I'm not trying to make ranges be the base of i/o, I'm trying to expose a range interface *based on* stream i/o interface. -SteveMy policy is very similar. But, as described above, I think range cannot cover non-blocing IO. And I think non-blocking IO interface is important for library implementations.In other words, range is not almighty. We should think distinct primitives for the IO.100% agree. The main thing I realized that brought me to propose the "range-based" (if you can call it that) version is that: 1. Ranges can be readily mapped to stream primitives *if* you use the concept of a range of T[] vs. a range of T. So in essence, without changing anything I can slap on a range interface for free. 2. Arrays make very efficient data sources, and are easy to create. We need a way to hook stream-using code onto an array. But be clear, I am *not* going to remove the existing stream I/O primitives I had for buffered i/o, I'm rather *adding* range primitives as well.
May 18 2012
2012/5/19 Steven Schveighoffer <schveiguy yahoo.com>:On Fri, 18 May 2012 10:39:55 -0400, kenji hara <k.hara.pg gmail.com> wrot=e:dI'm having trouble following the code, is there a place with the generate=I'm designing experimental IO primitives: https://github.com/9rnsr/diodocs? =C2=A0 I'm looking for an overview to understand where to look.I have created gh-pages: http://9rnsr.github.com/dio/d/io_core.html Kenji Hara
May 18 2012
On Fri, 18 May 2012 13:27:22 -0400, kenji hara <k.hara.pg gmail.com> wrote:2012/5/19 Steven Schveighoffer <schveiguy yahoo.com>:OK, *now* I understand what you mean by non-blocking. There are some I/O packages that use asynchronous i/o which return even before any data is given to the buffer. I thought this is what you were talking about. I'm fully on board with synchronous but non-blocking. That's what I assumed we would be doing, and it's well supported by low-level OS routines on all OSes. In my implementation for a buffer, I have two calls: read(buf[]) -> read until buf.length bytes are read or EOF readPartial(buf[]) -> read from 1 to buf.length bytes, but performs at most 1 low-level read. Returns 0 bytes on EOF. readPartial will block if no data is yet available, but obviously can be made to not block if the underlying OS handle is marked as non-blocking (I need to add some extra structure to account for this). Typically, this is the normal mechanism that I use for reading data that is not always available. First, I select on a socket until data is available, then use synchronous read to get whatever data exists. continuing reading... -SteveOn Fri, 18 May 2012 10:39:55 -0400, kenji hara <k.hara.pg gmail.com> wrote:I have created gh-pages: http://9rnsr.github.com/dio/d/io_core.htmlI'm having trouble following the code, is there a place with the generated docs? I'm looking for an overview to understand where to look.I'm designing experimental IO primitives: https://github.com/9rnsr/dio
May 18 2012
2012/5/19 Steven Schveighoffer <schveiguy yahoo.com>:On Fri, 18 May 2012 10:39:55 -0400, kenji hara <k.hara.pg gmail.com> wrot=e: [snip]On non-blocking i/o, why not just not support range interface at all? =C2==A0Idon't have any problem with that. =C2=A0In other words, if your input sou=rce isnon-blocking, and you try to use range primitives, it simply won't work. I admit, all of my code so far is focused on blocking i/o. =C2=A0I have s=omeexperience with non-blocking i/o, but it was to make a blocking interface that supported waiting for data with a timeout. =C2=A0Making a cross-plat=form(i.e. both windows and Posix) non-blocking interface is difficult because you use very different mechanisms on both OSes. And a lot of times, you don't want non-blocking i/o, but rather parallel i/o.[snip]zeNo, we cannot map output range concept to non-blocking output. 'put' operation always requires blocking.Yes, but again, put can use whatever stream primitives we have. In other words, it's quite possible to write range primitives which utili=stream primitivies. =C2=A0It's impossible to write good stream primitives=whichutilize range primitives.[snip]/o,My policy is very similar. But, as described above, I think range cannot cover non-blocing IO. And I think non-blocking IO interface is important for library implementations.I think you misunderstand, I'm not trying to make ranges be the base of i=I'm trying to expose a range interface *based on* stream i/o interface.The reasons why not use range primitives directly for stream I/O. 1. To specify a buffer for storing read bytes from upper layer. Input range doesn't have a way to specify buffer for storing read bytes to lower layer. Because input range is designed as a view of underlying container. Comparison of primitive count. The four or more primitives: empty + front + popFront + specifiy-buffer-for-storing-read-bytes + ... vs. My 'pull' primitive Which is better? 2. To avoid confusing I/O operation/interfaces and range ones. Yes, if you only needs blocking-io, you can use range i/f instead of i/o specific primitives, but it is very confusable. I think that enforcing to wrap IO objects (like File) with thin range wrapper is better for orthogonality. foreach (ubyte b; RawFile(fname).ranged) { ... } Kenji Hara
May 18 2012
On 5/18/12 8:27 AM, Steven Schveighoffer wrote:But be clear, I am *not* going to remove the existing stream I/O primitives I had for buffered i/o, I'm rather *adding* range primitives as well.That sounds very promising. Andrei
May 18 2012
On Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer wrote:2. I realized, buffering input stream of type T is actually an input range of type T[].The trouble is, why a slice? Why not an std.array.Array? Why not some other data source? (Check/egg problem....) Another problem I've noticed is the following: Say you're tokenizing some input range, and it happens to just be a huge, gigantic string. It *should* be possible to turn it into tokens with slices referring to the ORIGINAL string, which is VERY efficient because it doesn't require *any* heap allocations whatsoever. (You just tokenize with opApply() as you go, without every requiring a heap allocation...) However, this is *only* possible if you don't use the concept of an input range! Since you can't slice an input range, you'd be forced to use the front() and popFront() properties. But, as soon as you do that, you're gonna have to store the data somewhere... so your next-best option is to append it to some new gigantic array (instead of a bunch of small arrays, which require a lot of heap allocations), but even then, it's not as efficient as possible, because there's O(n) extra memory involved -- which defeats the whole purpose of working on small chunks at a time with no heap allocations. (If you're going to do that, after all, you might as well read the entire thing into a giant string at the beginning, and work with an array anyway, discarding the whole idea of a range while doing your tokenization.) Any ideas on how to solve this problem?
May 18 2012
On Friday, 18 May 2012 at 07:52:57 UTC, Mehrdad wrote:On Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer wrote:Provide slicing if underlying data source is compatible. I have the same need in my DCT, and so far I went with a custom implementation (not on Github yet), but plan to reuse std.io as soon as it will be more or less stable and usable.2. I realized, buffering input stream of type T is actually an input range of type T[].The trouble is, why a slice? Why not an std.array.Array? Why not some other data source? (Check/egg problem....) Another problem I've noticed is the following: Say you're tokenizing some input range, and it happens to just be a huge, gigantic string. It *should* be possible to turn it into tokens with slices referring to the ORIGINAL string, which is VERY efficient because it doesn't require *any* heap allocations whatsoever. (You just tokenize with opApply() as you go, without every requiring a heap allocation...) However, this is *only* possible if you don't use the concept of an input range! Since you can't slice an input range, you'd be forced to use the front() and popFront() properties. But, as soon as you do that, you're gonna have to store the data somewhere... so your next-best option is to append it to some new gigantic array (instead of a bunch of small arrays, which require a lot of heap allocations), but even then, it's not as efficient as possible, because there's O(n) extra memory involved -- which defeats the whole purpose of working on small chunks at a time with no heap allocations. (If you're going to do that, after all, you might as well read the entire thing into a giant string at the beginning, and work with an array anyway, discarding the whole idea of a range while doing your tokenization.) Any ideas on how to solve this problem?
May 18 2012
On Fri, 18 May 2012 03:52:51 -0400, Mehrdad <wfunction hotmail.com> wrote:On Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer wrote:Well, because that's what i/o buffers are :) There isn't an OS primitive that reads a file descriptor into an e.g. linked list. Anything other than a slice would go through a translation. I don't know what std.array.Array is.2. I realized, buffering input stream of type T is actually an input range of type T[].The trouble is, why a slice? Why not an std.array.Array? Why not some other data source? (Check/egg problem....)Another problem I've noticed is the following: Say you're tokenizing some input range, and it happens to just be a huge, gigantic string. It *should* be possible to turn it into tokens with slices referring to the ORIGINAL string, which is VERY efficient because it doesn't require *any* heap allocations whatsoever. (You just tokenize with opApply() as you go, without every requiring a heap allocation...) However, this is *only* possible if you don't use the concept of an input range!How so? A slice is an input range, and so is a string.Since you can't slice an input range, you'd be forced to use the front() and popFront() properties. But, as soon as you do that, you're gonna have to store the data somewhere... so your next-best option is to append it to some new gigantic array (instead of a bunch of small arrays, which require a lot of heap allocations), but even then, it's not as efficient as possible, because there's O(n) extra memory involved -- which defeats the whole purpose of working on small chunks at a time with no heap allocations. (If you're going to do that, after all, you might as well read the entire thing into a giant string at the beginning, and work with an array anyway, discarding the whole idea of a range while doing your tokenization.) Any ideas on how to solve this problem?I think I get what you are saying here -- if you are processing, say, an XML file, and you want to split that into tokens, you have to dup each token from the stream, because the buffer may be reused. But doing the same thing for a string would be wasteful. I think in these cases, we need two types of parsing. One is process the stream as it's read into a temporary buffer. If you need data from the temporary buffer beyond the scope of the processing loop, you need to dup it. Other way is read the entire file/stream into a buffer, then process that buffer with the knowledge that it's never going to change. We probably can have buffer identify which situation it's in, so the code can make a runtime decision on whether to dup or not. -Steve
May 18 2012
On Friday, 18 May 2012 at 13:44:43 UTC, Steven Schveighoffer wrote:On Fri, 18 May 2012 03:52:51 -0400, Mehrdad <wfunction hotmail.com> wrote:I beg to differ.. http://msdn.microsoft.com/en-us/library/windows/desktop/aa365469.aspxOn Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer wrote:Well, because that's what i/o buffers are :) There isn't an OS primitive that reads a file descriptor into an e.g. linked list.2. I realized, buffering input stream of type T is actually an input range of type T[].The trouble is, why a slice? Why not an std.array.Array? Why not some other data source? (Check/egg problem....)
May 18 2012
On Fri, 18 May 2012 11:40:24 -0400, Mehrdad <wfunction hotmail.com> wrote:On Friday, 18 May 2012 at 13:44:43 UTC, Steven Schveighoffer wrote:It still reads into an array of buffers, which are slices. And the resulting "range" looks *exactly* like a range of T[]. -SteveOn Fri, 18 May 2012 03:52:51 -0400, Mehrdad <wfunction hotmail.com> wrote:I beg to differ.. http://msdn.microsoft.com/en-us/library/windows/desktop/aa365469.aspxOn Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer wrote:Well, because that's what i/o buffers are :) There isn't an OS primitive that reads a file descriptor into an e.g. linked list.2. I realized, buffering input stream of type T is actually an input range of type T[].The trouble is, why a slice? Why not an std.array.Array? Why not some other data source? (Check/egg problem....)
May 18 2012
On Friday, 18 May 2012 at 15:49:23 UTC, Steven Schveighoffer wrote:Uh, the resulting range can be totally discontiguous...I beg to differ.. http://msdn.microsoft.com/en-us/library/windows/desktop/aa365469.aspxIt still reads into an array of buffers, which are slices. And the resulting "range" looks *exactly* like a range of T[]. -Steve
May 18 2012
On Fri, 18 May 2012 11:52:43 -0400, Mehrdad <wfunction hotmail.com> wrote:On Friday, 18 May 2012 at 15:49:23 UTC, Steven Schveighoffer wrote:So? So can a range of T[]. I'm not getting your point yet... -SteveUh, the resulting range can be totally discontiguous...I beg to differ.. http://msdn.microsoft.com/en-us/library/windows/desktop/aa365469.aspxIt still reads into an array of buffers, which are slices. And the resulting "range" looks *exactly* like a range of T[]. -Steve
May 18 2012
On Friday, 18 May 2012 at 15:57:20 UTC, Steven Schveighoffer wrote:So? So can a range of T[]. I'm not getting your point yet... -SteveWell you mentioned "There isn't an OS primitive that reads a file descriptor into an e.g. linked list, anything other than a slice would go through a translation.", but I was just pointing out that there is, and that it doesn't go through any translation. I guess you /can/ call it a "range of T[]", but then, you can *also* call a linked list "a range of T[]"... where each T[] has one element. That's not very useful tho, since their nature is kinda different..
May 18 2012
On Fri, 18 May 2012 12:02:16 -0400, Mehrdad <wfunction hotmail.com> wrote:On Friday, 18 May 2012 at 15:57:20 UTC, Steven Schveighoffer wrote:No, by range of T[] I mean this: static assert(isInputRange!Range && is(ElementType!Range == T[])); -SteveSo? So can a range of T[]. I'm not getting your point yet... -SteveWell you mentioned "There isn't an OS primitive that reads a file descriptor into an e.g. linked list, anything other than a slice would go through a translation.", but I was just pointing out that there is, and that it doesn't go through any translation. I guess you /can/ call it a "range of T[]", but then, you can *also* call a linked list "a range of T[]"... where each T[] has one element. That's not very useful tho, since their nature is kinda different..
May 18 2012
On Friday, 18 May 2012 at 16:16:21 UTC, Steven Schveighoffer wrote:No, by range of T[] I mean this: static assert(isInputRange!Range && is(ElementType!Range == T[])); -SteveYes, I believe I understood it correctly... In the case of ReadFileScatter, each T[] has the size of (at most) 1 page. In the case of a random linked list, each T[] has the size of 1 element. Hence you can represent both of them as "a range of T[]", but really, that's just trying to fit it into a mold instead of creating the mold based on the actual thing. What it *really* is is just a discontiguous buffer...
May 18 2012
Well, because that's what i/o buffers are :) There isn't an OS primitive that reads a file descriptor into an e.g. linked list. Anything other than a slice would go through a translation.It's a pity that iovec and T[] have switch length/ptr fields. Otherwise one could directly map read(ubyte[] bufs...) to libc.readv. It did wrote a buffered range that uses a linked list to promote an input range to a forward range. This is somewhat similar to lazy ByteStrings in haskell. There were some issue with reference counting and the implicit copy in foreach loops but other than that it's fairly useful. https://gist.github.com/1257196 The trouble with block-wise primitives (T[] input ranges) like byChunk is that they make common things like parsing very difficult because the client has to account for buffer wraps. Things like double buffering or a ringbuffer would help for this. martin
May 21 2012
On 5/18/12 2:52 AM, Mehrdad wrote:On Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer wrote:Because T[] is the fundamental representation of a typed contiguous area of storage.2. I realized, buffering input stream of type T is actually an input range of type T[].The trouble is, why a slice? Why not an std.array.Array? Why not some other data source? (Check/egg problem....)Say you're tokenizing some input range, and it happens to just be a huge, gigantic string. It *should* be possible to turn it into tokens with slices referring to the ORIGINAL string, which is VERY efficient because it doesn't require *any* heap allocations whatsoever. (You just tokenize with opApply() as you go, without every requiring a heap allocation...) However, this is *only* possible if you don't use the concept of an input range!But e.g. splitter() does exactly as you say. It's a range and does not use memory allocation. Andrei
May 18 2012
On 05/18/12 06:19, kenji hara wrote:I think range interface is not useful for *efficient* IO. The expected IO interface will be more *abstract* than range primitives. --- If you use range I/F to read bytes from device, we will always do blocking IO - even if the device is socket. It is not efficient. auto sock = new TcpSocketDevice(); if (sock.empty) { auto e = sock.front; } // In empty primitive, we *must* wait the socket gets one or more bytes or really disconnected.No. 'empty' has to return true only _after_ seeing EOF. Something like 'available' can return the number of elements known to be fetchable w/o blocking. [1]// If not, what exactly returns sock.front?EWOULDBLOCK :^) But, yes, it needs to block, as there's no generic way to return EAGAIN/EWOULDBLOCK. This is where the primitive returning a slice comes in - that one /can/ return an empty slice. So '!r.empty && r.fronts.length==0)' is the equivalent to EAGAIN. (and note i'm oversimplifying -- 'fronts' can return something that /acts/ as a slice; which is what i'm in fact are doing)// Then using range interface for socket reading enforces blocking IO. It is *really* inefficient.I think IO primitives must be distinct from range ones for the reasons mentioned above... I'm designing experimental IO primitives: https://github.com/9rnsr/dio I call the input stream "source", and call output stream "sink". "source" has a 'pull' primitive, and sink has 'push' primitive, and they can avoid blocking. If you want to construct input range interface from "source", you should use 'ranged' helper function in io.core module. 'ranged' returns a wrapper object, and in its front method, It reads bytes from "source", and if the read bytes not sufficient, blocks the input. In other words, range is not almighty. We should think distinct primitives for the IO.Well, your 'pull' and 'push' are just different names for my 'fronts' and 'puts' (modulo the data transfer interface, which can be done both ways using a set of overloads, hence it doesn't matter). I don't see any reason to invent yet another abstraction, when ranges can be made to work with some improvements. Ranges are just a convention; not a perfect one, but having /one/, not two or thirteen, is valuable. If you think ranges are flawed the discussion should be about ripping out every trace of them from the language and libraries and replacing them with something better. If you think that would be bad - well, having tens of different incompatible abstractions isn't good either. (and, yes, you can provide glue so that they can interact, but that does not scale well) Hmm, how are 'flush()' and 'commit()' supposed to work? Is data lost if you omit one or both of them? artur [1] Reminds me: struct S(T) { shared T a; property size_t available()() { return a; } } The compiler infers length as 'pure', which, depending on the definition of 'shared' is wrong. ('shared' /shouldn't/ imply 'volatile', but, as it is now, it does - so omitting a call to 'available' would be wrong)
May 18 2012
On Fri, 18 May 2012 07:05:50 -0400, Artur Skawina <art.08.09 gmail.com> wrote:On 05/18/12 06:19, kenji hara wrote:I think this is an example of what Kenji and I are talking about -- trying to make the range interface map to *all* I/O situations.I think range interface is not useful for *efficient* IO. The expected IO interface will be more *abstract* than range primitives. --- If you use range I/F to read bytes from device, we will always do blocking IO - even if the device is socket. It is not efficient. auto sock = new TcpSocketDevice(); if (sock.empty) { auto e = sock.front; } // In empty primitive, we *must* wait the socket gets one or more bytes or really disconnected.No. 'empty' has to return true only _after_ seeing EOF. Something like 'available' can return the number of elements known to be fetchable w/o blocking. [1]// If not, what exactly returns sock.front?EWOULDBLOCK :^) But, yes, it needs to block, as there's no generic way to return EAGAIN/EWOULDBLOCK. This is where the primitive returning a slice comes in - that one /can/ return an empty slice. So '!r.empty && r.fronts.length==0)' is the equivalent to EAGAIN. (and note i'm oversimplifying -- 'fronts' can return something that /acts/ as a slice; which is what i'm in fact are doing)I don't see any reason to invent yet another abstraction, when ranges can be made to work with some improvements. Ranges are just a convention; not a perfect one, but having /one/, not two or thirteen, is valuable. If you think ranges are flawed the discussion should be about ripping out every trace of them from the language and libraries and replacing them with something better. If you think that would be bad - well, having tens of different incompatible abstractions isn't good either. (and, yes, you can provide glue so that they can interact, but that does not scale well)My opinion is that ranges should be available for i/o when you need to hook them to some other range processing code, but they shouldn't be the preferred interface for all I/O. -Steve
May 18 2012
2012/5/18 Artur Skawina <art.08.09 gmail.com>:On 05/18/12 06:19, kenji hara wrote:OK. If reading bytes from underlying device failed, your 'fronts' can return empty slice. I understood. But, It is still *not efficient*. The returned slice will specifies a buffer controlled by underlying device. If you want to gather bytes into one chunk, you must copy bytes from returned slice to your chunk. We should reduce copying memories as much as possible. And, 'put' primitive in output range concept doesn't support non-blocikng w= rite. 'put' should consume *all* of given data and write it to underlying device, then it would block. Therefore, whole of range concept doesn't cover non-blocking I/O.I think range interface is not useful for *efficient* IO. The expected IO interface will be more *abstract* than range primitives. --- If you use range I/F to read bytes from device, we will always do blocking IO - even if the device is socket. It is not efficient. auto sock =3D new TcpSocketDevice(); if (sock.empty) { auto e =3D sock.front; } =C2=A0 // In empty primitive, we *must* wait the socket gets one or more bytes or really disconnected.No. 'empty' has to return true only _after_ seeing EOF. Something like 'available' can return the number of elements known to be fetchable w/o blocking. [1]=C2=A0 // If not, what exactly returns sock.front?EWOULDBLOCK :^) But, yes, it needs to block, as there's no generic way to return EAGAIN/EWOULDBLOCK. This is where the primitive returning a slice comes in - that one /can/ return an empty slice. So '!r.empty && r.fronts.length=3D=3D0)' is the equivalent to EAGAIN. (and note i'm oversimplifying -- 'fronts' can return something that /acts/ as a slice; which is what i'm in fact are doing)g=C2=A0 // Then using range interface for socket reading enforces blockin=For efficiency and removing bottlenecks. Even today, I / O is the slowest operation in the entire program. Providing good primitives for I/O is enough value. I have designed the 'pull' and 'push' primitives with two concepts: 1. Reduce copying memories as far as possible. 2. Control buffer memory under programer side, not device side.IO. It is *really* inefficient.I think IO primitives must be distinct from range ones for the reasons mentioned above... I'm designing experimental IO primitives: https://github.com/9rnsr/dio I call the input stream "source", and call output stream "sink". "source" has a 'pull' primitive, and sink has 'push' primitive, and they can avoid blocking. If you want to construct input range interface from "source", you should use 'ranged' helper function in io.core module. 'ranged' returns a wrapper object, and in its front method, It reads bytes from "source", and if the read bytes not sufficient, blocks the input. In other words, range is not almighty. We should think distinct primitives for the IO.Well, your 'pull' and 'push' are just different names for my 'fronts' and 'puts' (modulo the data transfer interface, which can be done both ways using a set of overloads, hence it doesn't matter). I don't see any reason to invent yet another abstraction, when ranges can be made to work with some improvements.Ranges are just a convention; not a perfect one, but having /one/, not two or thirteen, is valuable. If you think ranges are flawed the discussion should be about ripping out every trace of them from the language and libraries and replacing them with something better. If you think that would be bad - well, having tens of different incompatible abstractions isn't good either. (and, yes, you can provide glue so that they can interact, but that does not scale well)Range concept is good abstraction if underlying container controlls ownership. But, in I/O we want to *move* ownership of bytes. Range is not designed efficiently for the purpose, IMO.Hmm, how are 'flush()' and 'commit()' supposed to work? Is data lost if you omit one or both of them?In my io library, BufferedSink requires three primitives, flush, commit, and writable.artur [1] Reminds me: =C2=A0 struct S(T) { =C2=A0 =C2=A0 =C2=A0shared T a; =C2=A0 =C2=A0 =C2=A0 property size_t available()() { return a; } =C2=A0 } The compiler infers length as 'pure', which, depending on the definition of 'shared' is wrong. ('shared' /shouldn't/ imply 'volatile', but, as it is now, it does - so omitting a call to 'available' would be wrong)
May 18 2012
On 5/18/12 8:51 AM, kenji hara wrote:OK. If reading bytes from underlying device failed, your 'fronts' can return empty slice. I understood. But, It is still *not efficient*. The returned slice will specifies a buffer controlled by underlying device. If you want to gather bytes into one chunk, you must copy bytes from returned slice to your chunk. We should reduce copying memories as much as possible.Yah, this goes back to the fact that ranges are by definition buffered; there's no way to escape that. So as I said, we need to add unbuffered primitives (e.g. "Here's a buffer, fill it with data). They would work with both inputs that have no buffering at all, and with ranges.And, 'put' primitive in output range concept doesn't support non-blocikng write. 'put' should consume *all* of given data and write it to underlying device, then it would block.Right. Zero-copy I/O is a possibility, we need to define primitives for destructively transferring buffers to and from streams/ranges.Therefore, whole of range concept doesn't cover non-blocking I/O.Correct. Doesn't cover zero-copy I/O either. It's interesting to think what primitives we should define, and what algorithms can take advantage of them beyond just copy().Had only time to skim it, looks very promising.I'm designing experimental IO primitives: https://github.com/9rnsr/dioRange concept is good abstraction if underlying container controlls ownership. But, in I/O we want to *move* ownership of bytes. Range is not designed efficiently for the purpose, IMO.Yes, yes, yes. Perfect thinking. (What ranges are good at though is for algorithms to mess with.) Andrei
May 18 2012
On Friday, 18 May 2012 at 16:38:22 UTC, Andrei Alexandrescu wrote:And I think the issues you brought up some time ago regarding to orphan ranges and non-GC allocators are also rooted in this fact, i.e. that the design of ranges is completely oblivious to data ownership concerns. But as you said, it's a very convenient interface for algorithms, so… DavidRange concept is good abstraction if underlying container controlls ownership. But, in I/O we want to *move* ownership of bytes. Range is not designed efficiently for the purpose, IMO.Yes, yes, yes. Perfect thinking.
May 18 2012
On 05/18/12 15:51, kenji hara wrote:2012/5/18 Artur Skawina <art.08.09 gmail.com>:Depends if your input range supports zero-copy or not. IOW you avoid the copy iff the range can somehow write the data directly to the caller provided buffer. This can be true eg for file reads, where you can tell the read(2) syscall to write into the user buffer. But what if you need to buffer the stream? An intermediate buffer can become necessary anyway. But, as i said before, i agree that a caller-provided-buffer-interface is useful. E[] fronts(); void fronts(ref E[]); And one can be implemented in terms of the other, ie: E[] fronts[] { E[] els; fronts(els); return els; } void fronts(ref E[] e) { e[] = fronts()[]; } depending on which is more efficient. A range can provide enum bool HasBuffer = 0 || 1; so that the user can pick the more suited alternative.On 05/18/12 06:19, kenji hara wrote:OK. If reading bytes from underlying device failed, your 'fronts' can return empty slice. I understood. But, It is still *not efficient*. The returned slice will specifies a buffer controlled by underlying device. If you want to gather bytes into one chunk, you must copy bytes from returned slice to your chunk. We should reduce copying memories as much as possible.I think range interface is not useful for *efficient* IO. The expected IO interface will be more *abstract* than range primitives. --- If you use range I/F to read bytes from device, we will always do blocking IO - even if the device is socket. It is not efficient. auto sock = new TcpSocketDevice(); if (sock.empty) { auto e = sock.front; } // In empty primitive, we *must* wait the socket gets one or more bytes or really disconnected.No. 'empty' has to return true only _after_ seeing EOF. Something like 'available' can return the number of elements known to be fetchable w/o blocking. [1]// If not, what exactly returns sock.front?EWOULDBLOCK :^) But, yes, it needs to block, as there's no generic way to return EAGAIN/EWOULDBLOCK. This is where the primitive returning a slice comes in - that one /can/ return an empty slice. So '!r.empty && r.fronts.length==0)' is the equivalent to EAGAIN. (and note i'm oversimplifying -- 'fronts' can return something that /acts/ as a slice; which is what i'm in fact are doing)And, 'put' primitive in output range concept doesn't support non-blocikng write. 'put' should consume *all* of given data and write it to underlying device, then it would block.True, a write-as-much-as-possible-but not-more primitive is needed. size_t puts(E[], size_t atleast=size_t.max); or something like that. (Doing it this way allows for explicit non-blocking 'puts', ie '(written=puts(els, 0))==0' means EAGAIN.)Therefore, whole of range concept doesn't cover non-blocking I/O.See above.Do you have a contained microbenchmark? It would be easy to compare both approaches... If you do i'll write one using my scheme - so far i only did this for inter-thread communication, there's no file based backend.For efficiency and removing bottlenecks. Even today, I / O is the slowest operation in the entire program. Providing good primitives for I/O is enough value. I have designed the 'pull' and 'push' primitives with two concepts: 1. Reduce copying memories as far as possible. 2. Control buffer memory under programer side, not device side.// Then using range interface for socket reading enforces blocking IO. It is *really* inefficient.I think IO primitives must be distinct from range ones for the reasons mentioned above... I'm designing experimental IO primitives: https://github.com/9rnsr/dio I call the input stream "source", and call output stream "sink". "source" has a 'pull' primitive, and sink has 'push' primitive, and they can avoid blocking. If you want to construct input range interface from "source", you should use 'ranged' helper function in io.core module. 'ranged' returns a wrapper object, and in its front method, It reads bytes from "source", and if the read bytes not sufficient, blocks the input. In other words, range is not almighty. We should think distinct primitives for the IO.Well, your 'pull' and 'push' are just different names for my 'fronts' and 'puts' (modulo the data transfer interface, which can be done both ways using a set of overloads, hence it doesn't matter). I don't see any reason to invent yet another abstraction, when ranges can be made to work with some improvements.But what happens if neither flush nor commit is called?Ranges are just a convention; not a perfect one, but having /one/, not two or thirteen, is valuable. If you think ranges are flawed the discussion should be about ripping out every trace of them from the language and libraries and replacing them with something better. If you think that would be bad - well, having tens of different incompatible abstractions isn't good either. (and, yes, you can provide glue so that they can interact, but that does not scale well)Range concept is good abstraction if underlying container controlls ownership. But, in I/O we want to *move* ownership of bytes. Range is not designed efficiently for the purpose, IMO.Hmm, how are 'flush()' and 'commit()' supposed to work? Is data lost if you omit one or both of them?In my io library, BufferedSink requires three primitives, flush, commit, and writable.^^^^^^ s/length/available/'.[1] Reminds me: struct S(T) { shared T a; property size_t available()() { return a; } } The compiler infers length as 'pure', which, depending on thearturdefinition of 'shared' is wrong. ('shared' /shouldn't/ imply 'volatile', but, as it is now, it does - so omitting a call to 'available' would be wrong)
May 18 2012
2012/5/19 Artur Skawina <art.08.09 gmail.com>:On 05/18/12 15:51, kenji hara wrote:oOK. If reading bytes from underlying device failed, your 'fronts' can return empty slice. I understood. But, It is still *not efficient*. The returned slice will specifies a buffer controlled by underlying device. If you want to gather bytes into one chunk, you must copy bytes from returned slice to your chunk. We should reduce copying memories as much as possible.Depends if your input range supports zero-copy or not. IOW you avoid the copy iff the range can somehow write the data directly to the caller provided buffer. This can be true eg for file reads, where you can tell the read(2) syscall to write into the user buffer. But what if you need t=buffer the stream? An intermediate buffer can become necessary anyway. But, as i said before, i agree that a caller-provided-buffer-interface is useful. =C2=A0 E[] fronts(); =C2=A0 void fronts(ref E[]); And one can be implemented in terms of the other, ie: =C2=A0E[] fronts[] { E[] els; fronts(els); return els; } =C2=A0void fronts(ref E[] e) { e[] =3D fronts()[]; }The flaw of your design is, the memory to store read bytes/elements is allocated by the lower layer. E.g. If you want to construct linked list of some some elements, you must copy elements from returned slice to new allocated node. I think it is still inefficient.depending on which is more efficient. A range can provide =C2=A0enum bool HasBuffer =3D 0 || 1; so that the user can pick the more suited alternative.I think fewer primitives as possible is better design than adding extra/optional primitives. How many primitives in your interface design?g write.And, 'put' primitive in output range concept doesn't support non-blocikn=g'put' should consume *all* of given data and write it =C2=A0to underlyin=I can agree for the signatures. but the names 'fronts' and 'puts' are a little too similar.device, then it would block.True, a write-as-much-as-possible-but not-more primitive is needed. =C2=A0 size_t puts(E[], size_t atleast=3Dsize_t.max); or something like that. (Doing it this way allows for explicit non-blocking 'puts', ie '(written=3Dputs(els, 0))=3D=3D0' means EAGAIN.)Therefore, whole of range concept doesn't cover non-blocking I/O.It has a sample benchmark to compare performance with std.stdio for line iteration. In my PC, it is 2x faster in maximum.Do you have a contained microbenchmark? It would be easy to compare both approaches... If you do i'll write one using my scheme - so far i only did this for inter-thread communication, there's no file based backend.I have designed the 'pull' and 'push' primitives with two concepts: 1. Reduce copying memories as far as possible. 2. Control buffer memory under programer side, not device side.I'm designing experimental IO primitives: https://github.com/9rnsr/dioIf you forget to call 'commit', 0 length data will be written. And if you forget to call 'flush', the committed data won't be written to actual device. Kenji HaraIn my io library, BufferedSink requires three primitives, flush, commit, and writable.But what happens if neither flush nor commit is called?
May 18 2012
On 05/18/12 17:43, kenji hara wrote:2012/5/19 Artur Skawina <art.08.09 gmail.com>:It's a feature. :)On 05/18/12 15:51, kenji hara wrote:The flaw of your design is, the memory to store read bytes/elements is allocated by the lower layer.OK. If reading bytes from underlying device failed, your 'fronts' can return empty slice. I understood. But, It is still *not efficient*. The returned slice will specifies a buffer controlled by underlying device. If you want to gather bytes into one chunk, you must copy bytes from returned slice to your chunk. We should reduce copying memories as much as possible.Depends if your input range supports zero-copy or not. IOW you avoid the copy iff the range can somehow write the data directly to the caller provided buffer. This can be true eg for file reads, where you can tell the read(2) syscall to write into the user buffer. But what if you need to buffer the stream? An intermediate buffer can become necessary anyway. But, as i said before, i agree that a caller-provided-buffer-interface is useful. E[] fronts(); void fronts(ref E[]); And one can be implemented in terms of the other, ie: E[] fronts[] { E[] els; fronts(els); return els; } void fronts(ref E[] e) { e[] = fronts()[]; }E.g. If you want to construct linked list of some some elements, you must copy elements from returned slice to new allocated node. I think it is still inefficient.If you pick just one scheme, then you will end up with an unnecessary copy sometimes. Or using non-std APIs. Again, I'm saying *both* caller- owned-buffer *and* range-owned-buffer interfaces should be defined. Otherwise, code that needs decent performance will not be able to use the pure range API, and will not interoperate well with "std" code.depending on which is more efficient. A range can provide enum bool HasBuffer = 0 || 1; so that the user can pick the more suited alternative.I think fewer primitives as possible is better design than adding extra/optional primitives.How many primitives in your interface design?Multi-element versions of front, popFront and puts. I think this was enough to get things working; this is the tested and proven part. Then there's 'available' and 'free', so that it's possible to avoid blocking. And 'allocate' and 'release', for zero-copy output streams. But i don't remember if i've actually used these parts, i don't think i needed them. This is all from memory, as the last time i worked on this was a while ago, just before i ran into: http://www.digitalmars.com/d/archives/digitalmars/D/dtors_in_shared_structs_fail_to_compile_157978.html ...The names are bad, i know... If anybody has better suggestions... (and almost any other names would be better :) ) arturI can agree for the signatures. but the names 'fronts' and 'puts' are a little too similar.And, 'put' primitive in output range concept doesn't support non-blocikng write. 'put' should consume *all* of given data and write it to underlying device, then it would block.True, a write-as-much-as-possible-but not-more primitive is needed. size_t puts(E[], size_t atleast=size_t.max); or something like that. (Doing it this way allows for explicit non-blocking 'puts', ie '(written=puts(els, 0))==0' means EAGAIN.)Therefore, whole of range concept doesn't cover non-blocking I/O.
May 18 2012
On 05/18/12 20:18, Artur Skawina wrote:On 05/18/12 17:43, kenji hara wrote:And is apparently windows-only; missing HANDLE type, non- existent TextOutputRange. I gave up after running into: io/file.d:263: Error: static assert (isSource!(File)) is false arturI'm designing experimental IO primitives: https://github.com/9rnsr/dioIt has a sample benchmark to compare performance with std.stdio for line iteration.It's not exactly what i had i mind, but i tried to build it; it wants a 'io/wrapper.d' module which can not be found.
May 18 2012
On Friday, 18 May 2012 at 19:18:21 UTC, Artur Skawina wrote:On 05/18/12 20:18, Artur Skawina wrote:Current dio is PoC for new IO design. If we go with such design, I will add Linux/Mac support to dio. MasahiroOn 05/18/12 17:43, kenji hara wrote:And is apparently windows-only; missing HANDLE type, non- existent TextOutputRange. I gave up after running into: io/file.d:263: Error: static assert (isSource!(File)) is falseI'm designing experimental IO primitives: https://github.com/9rnsr/dioIt has a sample benchmark to compare performance with std.stdio for line iteration.It's not exactly what i had i mind, but i tried to build it; it wants a 'io/wrapper.d' module which can not be found.
May 19 2012
On 05/18/12 17:43, kenji hara wrote:I'm designing experimental IO primitives: https://github.com/9rnsr/dioIt has a sample benchmark to compare performance with std.stdio for line iteration.It's not exactly what i had i mind, but i tried to build it; it wants a 'io/wrapper.d' module which can not be found. artur
May 18 2012
Sorry, I have updated it. Run 'make runbench' or 'make runbench_opt'. Kenji Hara 2012/5/19 Artur Skawina <art.08.09 gmail.com>:On 05/18/12 17:43, kenji hara wrote:I'm designing experimental IO primitives: https://github.com/9rnsr/dioIt has a sample benchmark to compare performance with std.stdio for line iteration.It's not exactly what i had i mind, but i tried to build it; it wants a 'io/wrapper.d' module which can not be found. artur
May 19 2012
Please add README to top directory. (Contents are benchmark command, support environment and etc) We can see such information on web browser ;) P.S. I want to do pull request for supporting other environments. But I'm busy right now... Masahiro On Saturday, 19 May 2012 at 15:22:37 UTC, kenji hara wrote:Sorry, I have updated it. Run 'make runbench' or 'make runbench_opt'. Kenji Hara 2012/5/19 Artur Skawina <art.08.09 gmail.com>:On 05/18/12 17:43, kenji hara wrote:I'm designing experimental IO primitives: https://github.com/9rnsr/dioIt has a sample benchmark to compare performance with std.stdio for line iteration.It's not exactly what i had i mind, but i tried to build it; it wants a 'io/wrapper.d' module which can not be found. artur
May 19 2012
I don't have time to read the whole discussion right now, but I've thought since our exchange here about buffered stream. I've imagined something close to, but quite different from you buffered stream, where the length of the buffer chunk can be adapted, and the buffer be poped by an arbitrary amount of bytes: I reuse the name front, popFront and empty, but it may not be such a good idea. struct BufferedStream(T) { T[] buf; size_t cursor; size_t decoded; InputStream input; // returns a slice to the n next elements of the input stream. // this slice is valid until next call to front only. T[] front(size_t n) { if (n <= decoded - cursor) return buf[cursor..cursor+n]; if (n <= buffer.length) { ... // move data to the front of the buffer and read new data to // fill the buffer. return buf[0..n]; } if (n > buf.length) { ... // resize buffer and read new data to fill the buffer return buf[0..n]; } } // pop the next n elements from the buffer. void popFront(size_t n) { cursor += n; } void empty() { return input.eof && cursor == buf.length; } } This kind of buffered stream enable you read data by varying chunk size, but always read data by an amount that is convenient for the input stream. (and front could be made to return a buffer with the size that is most adequate for the stream when called with size_t.max as n). More importantly, it allows to peak at an arbitrary amount of data, use it, and decide how many items you want to consume. For example, if allows to write stuff like "ReadAWord" without double buffering: you get enough characters from the buffer until you find a space, and then you consume only the characters that are the space. "Steven Schveighoffer" , dans le message (digitalmars.D:167733), a écrit :OK, so I had a couple partially written replies on the 'deprecating std.stream etc' thread, then I had to go home. But I thought about this a lot last night, and some of the things Andrei and others are saying is starting to make sense (I know!). Now I've scrapped those replies and am thinking about redesigning my i/o package (most of the code can stay intact). I'm a little undecided on some of the details, but here is what I think makes sense: 1. We need a buffering input stream type. This must have additional methods besides the range primitives, because doing one-at-a-time byte reads is not going to cut it. 2. I realized, buffering input stream of type T is actually an input range of type T[]. Observe: struct /*or class*/ buffer(T) { T[] buf; InputStream input; ... property T[] front() { return buf; } void popFront() {input.read(buf);} // flush existing buffer, read next. property bool empty() { return buf.length == 0;} } Roughly speaking, not all the details are handled, but this makes a feasible input range that will perform quite nicely for things like std.algorithm.copy. I haven't checked, but copy should be able to handle transferring a range of type T[] to an output range with element type T, if it's not able to, it should be made to work.Or with joiner(buffer);I know at least, an output stream with element type T supports putting T or T[]. What I think really makes sense is to support: buffer!ubyte b; outputStream o; o.put(b); // uses range primitives to put all the data to o, one element (i.e. ubyte[]) of b at a timeOf course, output stream should not have a consistent interface with input stream.3. An ultimate goal of the i/o streaming package should be to be able to do this: auto x = new XmlParser("<rootElement></rootElement>"); or at least auto x = new XmlParser(buffered("<rootElement></rootElement>")); So I think arrays need to be able to be treated as a buffering streams. I tried really hard to think of some way to make this work with my existing system, but I don't think it will without unnecessary baggage, and losing interoperability with existing range functions.A simple string stream can be built on top of a string, with no other member than the string itself, can't it ? With my definition of buffered stream, at least, it can, and any array could support: T[] front(size_t i) { return this[0..min(i, $)]; } void popFront(size_t i) { this = this[i..$]; } -- Christophe
May 21 2012