digitalmars.D.learn - Set operation like cartesian product
- Andrea Fontana (11/11) Feb 28 2013 I see cartesianProduct in std.algorithm. I read:
- Andrea Fontana (9/20) Feb 28 2013 PS: In my case I can't use filter!(...): I'm trying to compare an
- bearophile (5/6) Feb 28 2013 I suggested pairwise():
- H. S. Teoh (27/40) Feb 28 2013 [...]
- Andrea Fontana (4/47) Feb 28 2013 triangulaProduct2 for [0,1,2,3] and [0,1,2,3] doesn't give (0,0)
- H. S. Teoh (18/42) Feb 28 2013 Ahhh, slight mistake there, it should be:
- H. S. Teoh (8/42) Feb 28 2013 [...]
I see cartesianProduct in std.algorithm. I read: auto N = sequence!"n"(0); // the range of natural numbers auto N2 = cartesianProduct(N, N); // the range of all pairs of natural numbers So it gives (0,0) (0,1) (1,0) ... and so on. Is there a way to generate only tuple: a[0] > a[1] (0,1) (0,2) ... (1,2) (1,3) .. (2,3) (2,4) or a[0] >= a[1] (0,0) (0,1) (0,2) ... (1,1) (1,2) (1,3) .. (2,2) (2,3) (2,4) Or the only way is use filter!(...) after cartesianProduct?
Feb 28 2013
On Thursday, 28 February 2013 at 15:32:00 UTC, Andrea Fontana wrote:I see cartesianProduct in std.algorithm. I read: auto N = sequence!"n"(0); // the range of natural numbers auto N2 = cartesianProduct(N, N); // the range of all pairs of natural numbers So it gives (0,0) (0,1) (1,0) ... and so on. Is there a way to generate only tuple: a[0] > a[1] (0,1) (0,2) ... (1,2) (1,3) .. (2,3) (2,4) or a[0] >= a[1] (0,0) (0,1) (0,2) ... (1,1) (1,2) (1,3) .. (2,2) (2,3) (2,4) Or the only way is use filter!(...) after cartesianProduct?PS: In my case I can't use filter!(...): I'm trying to compare an array of struct with itself to find similar ones, so I can't filter Tuple(struct, struct) in any way... I have to write: for (i; 0..arr.length) for(j; i+1..arr.length) // check arr[i] and arr[j] for similarities Any ideas?
Feb 28 2013
Andrea Fontana:Any ideas?I suggested pairwise(): http://d.puremagic.com/issues/show_bug.cgi?id=6788 Bye, bearophile
Feb 28 2013
On Thu, Feb 28, 2013 at 04:31:59PM +0100, Andrea Fontana wrote:I see cartesianProduct in std.algorithm. I read: auto N = sequence!"n"(0); // the range of natural numbers auto N2 = cartesianProduct(N, N); // the range of all pairs of natural numbers So it gives (0,0) (0,1) (1,0) ... and so on. Is there a way to generate only tuple: a[0] > a[1] (0,1) (0,2) ... (1,2) (1,3) .. (2,3) (2,4)[...] auto triangularProduct(R1,R2)(R1 r1, R2 r2) if (isForwardRange!R1) { return map!(function(a) => zip(take(a[1].save, a[0]), repeat(a[2])))( zip(sequence!"n"(0), repeat(r1.save), r2) ) .joiner(); } Both ranges can be infinite, only the first one needs to be a forward range.a[0] >= a[1] (0,0) (0,1) (0,2) ... (1,1) (1,2) (1,3) .. (2,2) (2,3) (2,4)[...] auto triangularProduct2(R1,R2)(R1 r1, R2 r2) if (isForwardRange!R1) { return map!(function(a) => zip(take(a[1].save, a[0]), repeat(a[2])))( zip(sequence!"n"(1), repeat(r1.save), r2) ) .joiner(); } As above, both ranges can be infinite, only the first one needs to be a forward range. Hope this helps. ;-) T -- Gone Chopin. Bach in a minuet.
Feb 28 2013
On Thursday, 28 February 2013 at 18:23:04 UTC, H. S. Teoh wrote:On Thu, Feb 28, 2013 at 04:31:59PM +0100, Andrea Fontana wrote:triangulaProduct2 for [0,1,2,3] and [0,1,2,3] doesn't give (0,0) (1,1) (2,2) (3,3) :)I see cartesianProduct in std.algorithm. I read: auto N = sequence!"n"(0); // the range of natural numbers auto N2 = cartesianProduct(N, N); // the range of all pairs of natural numbers So it gives (0,0) (0,1) (1,0) ... and so on. Is there a way to generate only tuple: a[0] > a[1] (0,1) (0,2) ... (1,2) (1,3) .. (2,3) (2,4)[...] auto triangularProduct(R1,R2)(R1 r1, R2 r2) if (isForwardRange!R1) { return map!(function(a) => zip(take(a[1].save, a[0]), repeat(a[2])))( zip(sequence!"n"(0), repeat(r1.save), r2) ) .joiner(); } Both ranges can be infinite, only the first one needs to be a forward range.a[0] >= a[1] (0,0) (0,1) (0,2) ... (1,1) (1,2) (1,3) .. (2,2) (2,3) (2,4)[...] auto triangularProduct2(R1,R2)(R1 r1, R2 r2) if (isForwardRange!R1) { return map!(function(a) => zip(take(a[1].save, a[0]), repeat(a[2])))( zip(sequence!"n"(1), repeat(r1.save), r2) ) .joiner(); } As above, both ranges can be infinite, only the first one needs to be a forward range. Hope this helps. ;-) T
Feb 28 2013
On Thu, Feb 28, 2013 at 09:20:52PM +0100, Andrea Fontana wrote:On Thursday, 28 February 2013 at 18:23:04 UTC, H. S. Teoh wrote:[...]Ahhh, slight mistake there, it should be: auto triangularProduct2(R1,R2)(R1 r1, R2 r2) if (isForwardRange!R1) { return map!(function(a) => zip(take(a[1].save, a[0]+1), repeat(a[2])))( zip(sequence!"n"(1), repeat(r1.save), r2) ) .joiner(); } There, better now? ;-) Also, if you only need products of finite ranges, it's possible to rewrite it so that it produces items in a nicer order. The strange order output by my examples are to cater for the infinite case. T -- Life would be easier if I had the source code. -- YHLauto triangularProduct2(R1,R2)(R1 r1, R2 r2) if (isForwardRange!R1) { return map!(function(a) => zip(take(a[1].save, a[0]), repeat(a[2])))( zip(sequence!"n"(1), repeat(r1.save), r2) ) .joiner(); } As above, both ranges can be infinite, only the first one needs to be a forward range. Hope this helps. ;-) TtriangulaProduct2 for [0,1,2,3] and [0,1,2,3] doesn't give (0,0) (1,1) (2,2) (3,3) :)
Feb 28 2013
On Thu, Feb 28, 2013 at 03:01:48PM -0800, H. S. Teoh wrote:On Thu, Feb 28, 2013 at 09:20:52PM +0100, Andrea Fontana wrote:[...] Argh. Another mistake. The above line should read: zip(sequence!"n"(0), repeat(r1.save), r2) :-/ T -- Once bitten, twice cry...On Thursday, 28 February 2013 at 18:23:04 UTC, H. S. Teoh wrote:[...]Ahhh, slight mistake there, it should be: auto triangularProduct2(R1,R2)(R1 r1, R2 r2) if (isForwardRange!R1) { return map!(function(a) => zip(take(a[1].save, a[0]+1), repeat(a[2])))( zip(sequence!"n"(1), repeat(r1.save), r2)auto triangularProduct2(R1,R2)(R1 r1, R2 r2) if (isForwardRange!R1) { return map!(function(a) => zip(take(a[1].save, a[0]), repeat(a[2])))( zip(sequence!"n"(1), repeat(r1.save), r2) ) .joiner(); } As above, both ranges can be infinite, only the first one needs to be a forward range. Hope this helps. ;-) TtriangulaProduct2 for [0,1,2,3] and [0,1,2,3] doesn't give (0,0) (1,1) (2,2) (3,3) :)
Feb 28 2013